ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, IL 60439

ANL/MCS-TM-196

Fortran 77 Interface Specification
to the SparsLinC 1.0 Library

by
Christian H. Bischof, Alan Carle,* and Peyvand Khadem:i

Mathematics and Computer Science Division

Technical Memorandum No. 196

May 1995

This work was supported by the Mathematical, Information, and Computational Sciences Division subpro-
gram of the Office of Computational and Technology Research, U.S. Department of Energy, under Contract
W-31-109-Eng-38; by the National Aerospace Agency under Purchase Order L25935D and Cooperative
Agreement No. NCCW-0027; and by the National Science Foundation, through the Center for Research on
Parallel Computation, under Cooperative Agreement No. CCR-9120008.

ANL authors’ email addresses: bischof@mcs.anl.gov khademi@mcs.anl.gov

*Address: Center for Research on Parallel Computation, Rice University, 6100 S. Main St., Houston, TX

77005; email: carle@cs.rice.edu.

Contents
Abstract 1
1 Imntroduction 1

2 Handling C Pointers from Fortran Programs 1
2.1 Valid Pointer Values 2
2.2 Imitialization of C Data Structures 2
2.3 Representation of Fortran Precisions m C 2
2.4 Linking C and Fortran Modules L o 3
2.5 Handling Mixed-Precision Codes 3

3 Uninitialized Vectors and Template Expansion 4
4 Naming Conventions 4
5 Representing Sparsity 4
6 Interface Routines 5
6.1 Value Insertion and Extraction Routines 5
6.2 Arithmetic Routines 5
6.3 Conversion Routines e 6
6.4 Initialization, Configuration, and Inquiry Routines 6
Appendix: Detailed Interface Specification 7
A.1 Value Insertion and Extraction Routines 8
A.2 Arithmetic Routines 14
A.3 Conversion Routines 21
A 4 Initialization, Configuration, and Inquiry Routines 25
References 30

11

Fortran 77 Interface Specification to the
SparsLinC 1.0 Library

by
Christian H. Bischof, Alan Carle, and Peyvand Khadem:

Abstract

The SparsLinC library, written in C, has been developed for exploiting sparsity in automatic
differentiation of codes. Issues pertaining to the proper interface to the library from Fortran
programs are discussed, including the interpretation of Fortran INTEGERs as C pointers, and
the representation of Fortran precisions in C. The Appendix contains the full set of Fortran
Interfaces to the SparsLinC library.

1 Introduction

A fundamental kernel in numerical linear algebra and also in automatic differentiation (see, e.g., [2])
1s the computation of a linear combination of some vectors, namely,

k
w=Yau,
i=1

> >

where each «; is referred to as a “multiplier,” w as the “left-hand side vector,” and any of the v;’s as
a “right-hand side vector.” Following Golub and Van Loan [4], we call this operation a GAXPY.
In the cases of interest for automatic differentiation, the number & of vectors on the right-hand side
is usually moderate, with & < 3 forming the bulk of computations.

The SparsLinC (Sparse Linear Combinations) library has been developed to support this kernel
computation for sparse vectors in REAL, DOUBLE PRECISION, COMPLEX, and DOUBLE COMPLEX arith-
metic. A sparse vector contains a significant number of zero entries, and SparsLinC exploits this
structure to save both on floating-point operations as well as on storage. SparsLinC employs a
polyalgorithm in which a sparse vector is represented by one of three data structures, depending on
the number and clustering of the indices corresponding to the nonzero entries in a vector. SparsLinC
1s mainly written in ANSI C with some Fortran 77 “wrapper” routines.

This document discusses how to access this library from a Fortran program and how to initialize
and manipulate the C data structures that support sparse vectors from a Fortran program. Also
discussed are the requirements on the Fortran implementation in this context.

2 Handling C Pointers from Fortran Programs

Since Fortran 77 does not have pointer variables, INTEGER variables are used to house the memory
addresses of the C structures implementingsparse vectors. We adopt the convention that the Fortran
INTEGER variable VPTR acts as a pointer to a sparse vector object, called sparse_object(VPTR).

Table 1: Default Assumptions on Correspondence of Fortran and C Floating-Point Types

Fortran 77 C
REAL float
DOUBLE PRECISION double
COMPLEX float [2]
DOUBLE COMPLEX | double [2]

2.1 Valid Pointer Values

We require that the Fortran INTEGER value “0” and the C pointer value “NULL ” are identical.
This assumption is critical in deciding whether VPTR contains a valid address of a sparse derivative
object. We assume that a VPTR of zero value implies that no sparse vector object has previously
been associated with VPTR and that we must allocate one. Note, in particular, that a zero VPTR does
not represent the sparse vector containing all zeros, although in “quiet” mode (see section 3) the
correct representation for the vector of all zeros will be quietly allocated.

In our implementation a Fortran INTEGER representing a pointer to a sparse vector object can

take the following values:

0 : Uninitialized pointer to a sparse vector object.

-1: Special value denoting a sparse vector of all zeros in the [REAL, DOUBLE PRECISION] to
[COMPLEX, DOUBLE COMPLEX] conversion routines (see sections 6.3 and 6.4).

A valid pointer to a sparse data structure: Such a valid address is assigned only by one of
the routines in the SparsLinC library.

If one cannot rely on the fact that a positive value for VPTR contains a valid pointer to a sparse
data structure, one must resort to memory authentication schemes to be able to answer this question
(see, for example, [1, Problem 2.12]).

2.2 Initialization of C Data Structures

SparsLinC employs data structures that have to be initialized before any of the other SparsLinC
routines can be called. The user must call the XSPINI routine to initialize these data structures.

2.3 Representation of Fortran Precisions in C

We make the default assumptions shown in Table 1 (which can be changed by redefining some
macros) concerning the correspondence of C and Fortran data types. In particular, we assume that
corresponding data types have the same word length and are aligned the same way. We further
assume that for Fortran COMPLEX or DOUBLE COMPLEX variables, the first and second entries in the
corresponding C float or double array of length two contain, respectively, the real and imaginary

parts of a complex number.

2.4 Linking C and Fortran Modules

Two issues arise in the context of linking Fortran and C modules. One is the passing of strings be-
tween Fortran and C. Because this is notoriously difficult and nonuniform across different platforms,
we avoid it. The only instance where we need to pass a string is for error-reporting purposes in the
“verbose” routines (see section 3). These routines, as well as a few others, are provided as Fortran
wrappers that perform the necessary string processing and then call the appropriate C routines.
The other issue is that of matching load module entry names generated by the C and Fortran
compilers. For example, we must consider what case (upper or lower) entry names are supposed to
be in or whether the Fortran compiler generates entry names with leading or trailing underscores.
SparsLinC provides a macro expansion utility to easily address this issue when installing SparsLinC.

2.5 Handling Mixed-Precision Codes

All arithmetic routines are defined to handle the case where the multipliers and sparse vectors
arguments are of the same type — any other use of the routines is wrong! Consequently, for each
arithmetic computation — for example, GAXPY of arity 5 — four subroutines are provided (one
for each of the precisions, REAL, DOUBLE PRECISION, COMPLEX, and DOUBLE COMPLEX).

One way to handle mixed-precision computations (e.g., a GAXPY where some of the vectors and
multipliers are stored in different precisions) is as follows:

1. Convert all multipliers to have the same precision as their corresponding vector, by using the
Fortran conversion functions REAL(), DBLE(), CMPLX(), and DCMPLX().

2. Accumulate all the vectors of the same type into temporary variables, by using the sparse
arithmetic routines.

3. Convert all vectors to the “highest” precision, by using the sparse conversion routines. The
usual hierarchy, in ascending order, is REAL, DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX.

4. Accumulate these into a (possibly temporary) vector of that precision, by using the sparse
arithmetic routines.

5. If necessary, truncate this vector to the precision desired for the left-hand side, by using the
sparse conversion routines.

As an alternative, the following scheme has been suggested by Goldberg [3, p. 31]. Assume that
an expression is represented as an expression tree, with the final result at its root. Then proceed as
follows:

Step 1: Assign each operation a tentative precision, which is the maximum of its two operands,
proceeding from the leaves to the root.

Step 2: Proceeding from the root to the leaves, assign to each operation the maximum of the
tentative precision and the precision expected by the parent.

This would involve more conversion than the current rule, but could also easily be implemented.
In any case, the responsibility for enforcing consistent input types to the sparse vector routines rests
with the user of these routines.

3 Uninitialized Vectors and Template Expansion

During the execution of a program, we may try to access sparse_object(VPTR) for a VPTR that is NULL.
Our routines check all VPTR ’s corresponding to vectors on the right-hand side to see whether they
are NULL. A NULL pointer indicates that the gradient that is being passed has not been initialized to
point to a valid sparse representation of a gradient.

This case may happen, for example, if the code passed to the automatic differentiation tool
contains an uninitialized variable X (perhaps arising from the fact that the user knows that his
particular compiler blanks all variables before program execution). Then the occurrence of X on the
right-hand side of an assignment statement may lead us to try to access sparse_object(VPTR) for a
VPTR that is NULL, where VPTR is the pointer to the sparse derivative object associated with X.

All routines where the case of uninitialized right-hand sides can occur are provided in two versions:

Verbose version: Initialize VPTR to point to a representation of the vector of all zeros; report the
file name, line number, and position of VPTR in the argument list to an error unit (default
is stdout); and optionally halt the program. The routine XSPUIV can be called to customize
these options. If a particular call refers to more than one NULL pointer, all occurrences of
NULL pointers will be reported.

Quiet version: Initialize VPTR to point to a representation of the vector of all zeros, and proceed
quietly.

4 Naming Conventions

We adopt the following naming conventions for SparsLinC routines:

e The first letter will be an “S” “D”, “C”, “Z”, or “X,” indicating, respectively, whether the rou-
tine manipulates vectors in REAL, DOUBLE PRECISION, COMPLEX, and DOUBLE COMPLEX pre-
cision or whether it 1s a nonnumeric utility routine.

e The second and third letters will be “SP”, to denote that the routine is in the SparsLinC
library.

e For routines that may encounter uninitialized right-hand sides and are provided in a verbose
and quiet version, the fourth and fifth letter are an abbreviation of the task performed by the
routine, and the sixth letter will be a “V” or “Q,” respectively. For other routines, the last two
or three letters will be an abbreviation of the task performed by the routine.

Unless otherwise specified, an identifier ending in “PTR” refers to an INTEGER variable containing
the pointer to a sparse derivative object. By virtue of the side effects associated with the handling
of uninitialized variables, derivative objects corresponding to entries on the right-hand side of a
GAXPY may be modified in such a call (from zero to a valid pointer).

5 Representing Sparsity

A sparse vector with nonz nonzeros can be represented in Fortran by an INTEGER array of length
nonz containing the indices of nonzero entries, and a floating-point array of appropriate precision
containing the corresponding values. For example, the 7-vector

(11.0, 0, 33.0, 44.0, 0, 0, 77.0)

could have the following sparse representation using two arrays of length 4 each:

IndeXArray:| 1 | 3 | 4 | 7 |

Value Array: | 11.0 | 33.0 | 44.0 | 77.0 |

We will refer to this two-array representation of the vector as the Fortran Sparse Format.
The corresponding nonsparse representation, which we will call the Fortran Nonsparse Format,
would be a floating-point array of length 7, containing zeros in entries 2, 5, and 6. Lastly, there is
the SparsLinC Sparse Format, which is the internal SparsLinC representation of the vector.

6 Interface Routines

The following sections give an overview of the functionality provided by SparsLinC. A complete
description is provided in the appendix.

6.1 Value Insertion and Extraction Routines

We provide the following routines to insert/extract values into/from the sparse vector representa-
tions:

[S.D,C,Z]SPSD: Convert a sparse vector stored in Fortran Sparse Format into the SparsLinC
Sparse Format vector (used for initializing the SeeD matrix).

[S.D,C,Z]SPXD[Q.V]: EXtract a SparsLinC Sparse Format vector into a Fortran Nonsparse
(Dense) Format vector.

[S.D,C,Z]SPXS[Q,V]: EXtract a SparsLinC Sparse Format vector into a Fortran Sparse Format
vector.

[S.D,C,Z]SPXM[Q,V]: EXtract a SparsLinC Sparse Format vector, Multiply it by a scalar and
add the result to a Fortran Nonsparse Format vector.

[S.D,C,Z]SPXA[Q.V]: EXtract and Add a SparsLinC Sparse Format vector to a Fortran Non-
sparse Format vector.

[S.D,C.Z]SPPR[Q.V]: PRint a sparse vector.

6.2 Arithmetic Routines

[S.D,C,Z]SPCP[Q,V] : CoPy a vector.

[S.D,C,Z]SPZRO: Assign the vector of all ZeROs to a sparse vector.

[S.D,C,Z]SPVZR: Assign to each entry in an array of sparse vectors the Vector of all ZeRos.
[S.D,C,Z]SPG1[Q.V], ..., [S,D,C,ZISPG5[Q,V]: Perform a GAXPY with 1 to 5 vectors.

[S.D,C,Z]SPGX[Q,V]: Perform a GAXPY with more than 5 vectors. Unlike the “special-case”
GAXPY implementations, this routine assumes that pointers to right-hand-side vectors as well
as multipliers are packed into a vector. The particular choice of 5 for the cutoff was motivated,
on the one hand, by the fact that in our experience the great majority of GAXPY’s occurring

in the automatic differentiation context involve no more than five vectors and, on the other
hand, by the fact that every special GAXPY implementation adds eight new entries to the
(already rather large) library.

[C,Z]SPIM[Q,V]: Extract the IMaginary part of a COMPLEX or DOUBLE COMPLEX sparse vector into
a REAL or DOUBLE PRECISION sparse vector. Corresponds to IMAG().

[C,Z]SPCJ[Q,V]: ConJugate a COMPLEX or DOUBLE COMPLEX sparse vector. Corresponds to CONJG().

6.3 Conversion Routines

[S,D,C,Z]SP2S[Q,V]: Sparse vector conversion to REAL (Single Precision). REAL or DOUBLE
PRECISION conversion to REAL, or extraction of real part of COMPLEX or DOUBLE COMPLEX sparse
vector into a REAL sparse vector. Corresponds to REAL().

[S.D,C,Z]SP2D[Q.V]: Sparse vector conversion to DOUBLE PRECISION. REAL or DOUBLE
PRECISION conversion to DOUBLE PRECISION, or extraction of real part of COMPLEX or DOUBLE
COMPLEX sparse vector into a DOUBLE PRECISION sparse vector. Corresponds to DBLE().

[S,D]SP2C[Q,V]: Sparse vector conversion of [REAL, DOUBLE PRECISION] to COMPLEX. The
CMPLX() Fortran intrinsic can take one or two arguments. We adopt the convention that
if VPTR equals -1, then the corresponding vector is taken to be the zero vector. We use a value
other than 0 to distinguish this case from the one where a vector is uninitialized.

[S,D]SP2Z[Q,V]: Sparse vector conversion of [REAL, DOUBLE PRECISION] to DOUBLE COMPLEX
(Z). Various Fortran vendor compilers support the REAL to DOUBLE COMPLEX conversion, usu-
ally by adding an intrinsic DCMPLX() or ZCMPLX(). Hence, we also provide the equivalent
vector conversion, for completeness. We adopt the convention that if VPTR equals -1, then the
corresponding vector is taken to be the zero vector. We use a value other than 0 to distinguish
this case from the one where a vector is uninitialized.

6.4 Initialization, Configuration, and Inquiry Routines

XSPINI: INTtialize C data structures. Must be called before calling the derivative code employing
other SparsLinC library calls, and must be called only once. When called more than once, all
but the first call act as no-ops.

XSPCNF: CoNFigure certain internal SparsLinC parameters.
XSPUIV: Configure action to be taken upon encountering UnlInitialized Variables.
XSPMEM: Report amount of MEMory used for representing sparse vectors.

XSPFRA: FRee All memory for C sparse vector data structures. After a call to this routine, all
VPTR’s are left dangling. The purpose of this routine is to free memory when derivative
computation is completed.

Appendix: Detailed Interface Specification

To allow for detailed error reporting when encountering uninitialized sparse derivative objects, we
provide a template expansion mechanism that maps calls to templates into calls to actual routines
(which may or may not pass line number and file name), in the fashion outlined in section 3. Routines
for which such a functionality is provided have the optional arguments [line file] in their parameter
list, where the variable “line” is declared as INTEGER and “file” as CHARACTER*(#*) , and both are
input parameters. Additionally, for these routines (such as the dense extraction routine which we
use here as a prototypical example), we use the following notation in the header of the routine
description:

SUBROUTINE SSPXD[Q,V] (XVEC, INLEN, VPTR, OUTLEN, INFO, [line, file])

as a shorthand for the following:

SUBROUTINE SSPXDQ (XVEC, INLEN, VPTR, OUTLEN, INFO)
SUBROUTINE SSPXDV (XVEC, INLEN, VPTR, OUTLEN, INFO, line, file)

We also utilize variable names with up to eight characters, although all subroutine names are no
longer than six characters.

Again, we adopt the term sparse_object(VPTR) as a shorthand for “the sparse_object() pointed
to by VPTR.” To save space, we provide only the calling sequence for one particular floating-point
precision.

A.1 Value Insertion and Extraction Routines

SSPSD, DSPSD, CSPSD, ZSPSD
SUBROUTINE SSPSD (VPTR, INDVEC, VALVEC, LEN)

Purpose

Conversion of a vector in Fortran Sparse Format into a vector in SparsLinC Sparse For-
mat. The Fortran Sparse Format vector is given by the two arrays, INDVEC(1:LEN) and
VALVEC(1:LEN), representing the indices and values of a sparse vector z (say), respectively.
¢ is copied into sparse_object(VPTR) which is the vector in SparsLinC Sparse Format. The
indices in INDVEC need not be in any particular order (internally, SPSD performs an ascending
order sort). However, INDVEC and VALVEC must be identically aligned, i.e., if in the Fortran
Nonsparse Format has a nonzero entry at index ¢ with value v, then for some J, INDVEC(J)
= 1 and VALVEC(J) = v. SPSD performs a destructive copy, i.e., if sparse_object(VPTR) had
been previously allocated (via SPSD or as a result of being an output argument of some
other SparsLinC routine), the previous information in sparse_object(VPTR) is lost, and the

dynamically-allocated memory where that information resided is deallocated.

Arguments

VPTR (Output) INTEGER
Upon exit, sparse_object(VPTR) contains a copy of the sparse vector repre-
sented by INDVEC and VALVEC.

INDVEC (input) INTEGER array, dimension (LEN)
Indices of the nonzero values of the sparse vector. (We assume that indices
are > 1, therefore, INDVEC entries < 0 would be incorrect and would result
in a runtime error.)

VALVEC (input) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX] array, di-
mension (LEN)
Nonzero values of the sparse vector.

LEN (input) INTEGER

LEN > 0 is the number of nonzeros in the sparse vector. If LEN equals zero,
VPTR is initialized to point to the vector of all zeros and INDVEC and VALVEC
are not referenced.

SSPXDI[Q,V], DSPXD[Q,V], CSPXD[Q,V], ZSPXD[Q,V]

SUBROUTINE SSPXD[Q,V] (XVEC, INLEN, VPTR, OUTLEN, INFO, [line, filel)

Purpose

Extracts sparse_object(VPTR) into the Fortran Nonsparse Format vector XVEC.

Arguments

XVEC

INLEN

VPTR

OUTLEN

INFO

(Output) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX] array,
dimension (INLEN)

On exit, if INFO equals zero, XVEC(1:INLEN) will contain a dense rep-
resentation of sparse_object(VPTR). If OUTLEN is less than INLEN then
XVEC (OUTLEN+1:INLEN) is initialized to all zeros. If INFO <> 0, XVEC is
not referenced.

(input) INTEGER
Length of XVEC.

(input/output) INTEGER
Pointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it is
initialized to point to the vector of all zeros (which is why it might be an

output argument).

(output) INTEGER

Largest index in the nonzero index set in sparse_object(VPTR). This value
will always be returned, whether XVEC is initialized or not. See the descrip-
tion of INFO below.

(output) INTEGER

If INLEN < OUTLEN, INFO will be set to -1, and XVEC is not referenced.
Otherwise, INFO is set to 0, and XVEC(1:INLEN) is initialized to a Fortran
Nonsparse Format copy of sparse_object(VPTR).

SSPXS[Q,V], DSPXS[Q,V], CSPXS[Q,V], ZSPXS[Q,V]
SUBROUTINE SSPXS[Q,V] (INDVEC, VALVEC, INLEN, VPTR, OUTLEN, INFO, [line, filel)

Purpose

Extracts sparse_object(VPTR) into the Fortran Sparse Format vector represented by the two
arrays, INDVEC and VALVEC.

Arguments

INDVEC (output) INTEGER array, dimension (INLEN)
On exit, if INFO equals zero, INDVEC(1:0UTLEN) contains the indices
of the nonzero entries of sparse_object(VPTR). If INFO <> 0, INDVEC
is not referenced. If INFO = 0 and OUTLEN is less than INLEN then
INDVEC (OUTLEN+1: INLEN) is not referenced.

VALVEC (Output) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX] array,
dimension (INLEN)
On exit, if INFO equals zero, VALVEC(1:0UTLEN) will contain the nonzero
entries of sparse_object(VPTR). If INFO <> 0, VALVEC is not referenced. If
INFO = 0 and OUTLEN is less than INLEN then VALVEC (OUTLEN+1:INLEN) is
not referenced.

INLEN (input) INTEGER
Length of INDVEC and VALVEC.

VPTR (input/output) INTEGER
Pointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it is
initialized to point to the vector of all zeros (which is why it might be an
output argument).

OUTLEN (Output) INTEGER
Number of nonzeroes in sparse_object(VPTR). This value will always be re-
turned, whether INDVEC and VALVEC are initialized or not. See the descrip-
tion of INFO below.

INFO (Output) INTEGER

If INLEN < OUTLEN, INFO will be set to -1, and INDVEC and VALVEC are
not referenced. Otherwise, INFO is set to 0, and INDVEC(1:0UTLEN) and
VALVEC(1:0UTLEN) are initialized to the Fortran Sparse Format copy of
sparse_object(VPTR).

10

SSPXM][Q,V], DSPXM[Q,V], CSPXM[Q,V], ZSPXMIQ,V]
SUBROUTINE SSPXM[Q,V] (XVEC, INLEN, MULT, VPTR, OUTLEN, INFO, [line, file])

Purpose
Adds the weighted contents of sparse_object(VPTR) to the Fortran Nonsparse Format
vector XVEC, where MULT is the multplicative weight (i.e., XVEC = XVEC 4 MULT =
sparse_object(VPTR)). For example, say XVEC is a vector of length 7 containing all ones,
MULT is equal to 2.0, and sparse_object(VPTR) is as follows:

IndexArray:| 1 | 3 | 4 | 7 |

Value Array: | 11.0 | 33.0 [44.0 | 77.0 |

Subsequent to the call to this routine, XVEC would contain the following:

(23.0, 1.0, 67.0, 89.0, 1.0, 1.0, 154.0)

Arguments

XVEC (input/output) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX]
array, dimension (INLEN)
On exit, if INFO equals zero, XVEC(1:INLEN) will have added to it the
weighted contributions of the values in sparse_object(VPTR), with MULT spec-
ifying the weight. If INFO <> 0, XVEC is not modified.

INLEN (input) INTEGER
Length of XVEC.

MULT (input) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX]
Multiplier.

VPTR (input/output) INTEGER
Pointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it is
initialized to point to the vector of all zeros (which is why it might be an
output argument).

OUTLEN (Output) INTEGER
Largest index in the nonzero index set in sparse_object(VPTR). This value
will always be returned, whether XVEC is modified or not. See the descrip-
tion of INFO below.

INFO (Output) INTEGER

If INLEN < OUTLEN, INFO will be set to -1, and XVEC is not modified. Other-
wise, INFO is set to 0, and XVEC(1:INLEN) is modified as described above.

11

SSPXA[Q,V], DSPXA[Q,V], CSPXA[Q,V], ZSPXA[Q,V]

SUBROUTINE SSPXA[Q,V] (XVEC, INLEN, VPTR, OUTLEN, INFO, [line, filel)

Purpose

Adds the contents of sparse_object(VPTR) to the Fortran Nonsparse Format vector XVEC
(i.e., XVEC = XVEC + sparse_object(VPTR)). (SPXA is identical to the SPXM routine with MULT

equal to one; see the documentation for SPXM.)

Arguments

XVEC

INLEN

VPTR

OUTLEN

INFO

ﬁnput/output) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX]
array, dimension (INLEN)

On exit, if INFO equals zero, XVEC (1: INLEN) will have added to it the values
in sparse_object(VPTR). If INFO <> 0, XVEC is not modified.

(input) INTEGER
Length of XVEC.

(input/output) INTEGER
Pointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it is
initialized to point to the vector of all zeros (which is why it might be an

output argument).

(output) INTEGER

Largest index in the nonzero index set in sparse_object(VPTR). This value
will always be returned, whether XVEC is modified or not. See the descrip-
tion of INFO below.

(output) INTEGER
If INLEN < OUTLEN, INFO will be set to -1, and XVEC is not modified. Other-
wise, INFO is set to 0, and XVEC(1:INLEN) is modified as described above.

12

SSPPR[Q,V], DSPPR[Q,V], CSPPR[Q,V], ZSPPR[Q,V]
SUBROUTINE SSPPR[Q,V] (VPTR, EXT, [line, filel)

Purpose

Writes number of nonzeros as well as index/value pairs of sparse_object(VPTR) onto stdout

or a file, with the following format:

Number of nonzeros = . . .

Index Value

Arguments
VPTR (input/output) INTEGER
Pointer to the SparsLinC Sparse Format vector. If VPTR is NULL, it is
initialized to point to the vector of all zeros (which is why it might be an
output argument).
EXT (input) INTEGER

Must be in the range [0,999]. If EXT equals zero, output written is to
stdout. Otherwise EXT is converted to its ASCII equivalent and used as the
extension appended to the filename “SPPR.” and output is written to this
file.

13

A.2 Arithmetic Routines

SSPCP[Q,V], DSPCP[Q,V], CSPCP[Q,V], ZSPCP[Q,V]

SUBROUTINE SSPCP[Q,V] (DESTPTR, SRCPTR, [line, filel)

Purpose
Copies sparse_object(SRCPTR) into sparse_object(DESTPTR).
Arguments
DESTPTR (output) INTEGER
Pointer to sparse vector object.
SRCPTR (input/output) INTEGER

Pointer to sparse vector object.

14

SSPZRO, DSPZRO, CSPZRO, ZSPZRO

SUBROUTINE SSPZRO (VPTR)

Purpose

Initializes sparse_object(VPTR) to the vector of all zeros.
Arguments

VPTR (input/output) INTEGER

Pointer to sparse vector object.

15

SSPVZO, DSPVZO, CSPVZO, ZSPVZO

SUBROUTINE SSPVZO0 (VPTRS,n)

Purpose
Initializes sparse_object(VPTRS(1)) to point to the vector of all zeros for i =1,...
Arguments
VPTRS (input/output) INTEGER array, length (N)
Array of pointers to sparse vector objects.
N (input) INTEGER

Length of VPTRS array.

(N

16

SSPG1[Q,V], ..., SSPG5[Q,V], DSPG1[Q,V], ..., DSPG5[Q,V],
CSPG1[Q,V], ..., CSPG5[Q,V], ZSPG1[Q,V], ..., ZSPG5[Q,V

SUBROUTINE SSPG1[Q,V] (DESTPTR, ALPHA1, VIPTR, [line, filel)

SUBROUTINE SSPG5[Q,V] (DESTPTR, ALPHA1, VIPTR, ..., ALFA5, V5PTR, [line, filel)

Purpose
Computes
sparse_object(DESTPTR) = Zle ALPHA{ * sparse_object(ViPTR)
for values of k& from 1 to 5. It is assumed that all V:PTR are pointers to sparse vector
objects representing the same precision (REAL , DOUBLE PRECISION , COMPLEX , or DOUBLE
COMPLEX) and that all the multipliers ALPHA: are of the same precision as well.

Arguments
DESTPTR (output) INTEGER
Pointer to sparse vector object.
ALPHA: (input) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX] .
Multipliers of sparse_object(ViPTR).
ViPTR (input/output) INTEGER

Pointers to sparse vector object.

17

SSPGX[Q,V], DSPGX[Q,V], CSPGX[Q,V], ZSPGX|[Q,V]
SUBROUTINE SSPGX[Q,V] (DESTPTR, ARITY, ALPHAVEC, VPTRVEC, [line, file])

Purpose
Computes
sparse_object(DESTPTR) = Z?B}TY ALPHAVEC[¢] * sparse_object(VPTRVEC[:]).
It is assumed that all VPTRVEC[:] are pointers to sparse vector objects representing the
same precision (REAL , DOUBLE PRECISION, COMPLEX, or DOUBLE COMPLEX) and that all the
multipliers ALPHAVEC[:] are of the same precision as well.

Arguments

DESTPTR (Output) INTEGER
Pointer to sparse vector object.

ARITY (input) INTEGER
Number of sparse derivative objects on the right-hand side.

ALPHAVEC (input) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX] array, di-
mension (ARITY)
Scalar multipliers.

VPTRVEC (input/output) INTEGER array, dimension (ARITY).

Array of pointers to sparse vector objects.

18

CSPIM[Q,V], ZSPIM[Q,V]
SUBROUTINE CSPIM[Q,V] (DESTPTR,VPTR, [line, filel)

Purpose
Returns the imaginary part of sparse_object(VPTR) in sparse_object(DESTPTR).

CSPIM: sparse_object(VPTR) is assumed to be in COMPLEX format and
sparse_object(DESTPTR) will be in REAL format.

ZSPIM: sparse_object(VPTR) is assumed to be in DOUBLE COMPLEX format and
sparse_object(DESTPTR) will be in DOUBLE PRECISION format.

Arguments
DESTPTR (Output) INTEGER
Pointer to sparse vector object in REAL [DOUBLE PRECISION] format.
VPTR (input/output) INTEGER

Pointer to sparse vector object in COMPLEX [DOUBLE COMPLEX] format.

19

CSPCJ[Q,V], ZSPCJ[Q,V]

SUBROUTINE CSPCJ[Q,V] (DESTPTR,VPTR, [line, file])

Purpose
Returns the conjugate complex of sparse_object(VPTR) in sparse_object(DESTPTR).
Arguments
DESTPTR (output) INTEGER
Pointer to sparse vector object in COMPLEX [DOUBLE COMPLEX] format.
VPTR (input/output) INTEGER

Pointer to sparse vector object in COMPLEX [DOUBLE COMPLEX] format.

20

A.3 Conversion Routines

SSP2S[Q,V], DSP2S[Q,V], CSP2S[Q,V], ZSP2S[Q,V]
SUBROUTINE SSP2S[Q,V] (DESTPTR, VPTR, [line, filel)

Purpose
SSP28S: sparse_object(VPTR) is copied to sparse_object(DESTPTR).

DSP2S: A copy of sparse_object(VPTR) is truncated to REAL format and copied into
sparse_object(DESTPTR).

CSP2S: The real part of sparse_object(VPTR) is copied into sparse_object(DESTPTR).

ZSP2S: A copy of the real part of sparse_object(VPTR) is truncated to REAL format and
copied into sparse_object(DESTPTR).

Arguments
DESTPTR (Output) INTEGER
Pointer to sparse vector object in REAL format.
VPTR (input/output) INTEGER

Pointer to sparse vector object in REAL [DOUBLE PRECISION, COMPLEX,
DOUBLE COMPLEX] format.

21

SSP2D[Q,V], DSP2D[Q,V], CSP2D[Q,V], ZSP2D[Q,V]
SUBROUTINE SSP2D[Q,V] (DESTPTR, VPTR, [line, filel)

Purpose
SSP2D: A copy of sparse_object(VPTR) is converted to DOUBLE PRECISION format and
copied to sparse_object(DESTPTR).

DSP2D: sparse_object(VPTR) is copied into sparse_object(DESTPTR).

CSP2D: A copy of the real part of sparse_object(VPTR) is converted to DOUBLE
PRECISION format and copied into sparse_object(DESTPTR).

ZSP2D: The real part of sparse_object(VPTR) is copied into sparse_object(DESTPTR).

Arguments
DESTPTR (Output) INTEGER
Pointer to sparse vector object in DOUBLE PRECISION format.
VPTR (input/output) INTEGER

Pointer to sparse vector object in REAL [DOUBLE PRECISION, COMPLEX,
DOUBLE COMPLEX] format.

22

SSP2C[Q,V], DSP2C[Q,V]
SUBROUTINE SSP2¢[Q,V] (DESTPTR, VRLPTR, VIMPTR, [line, file])

Purpose

sparse_object(VRLPTR) and sparse_object(VIMPTR) correspond to the real and imaginary

part of the complex vector to be built. It is assumed that sparse_object(VRLPTR) and

sparse_object(VIMPTR) are stored in the same format (REAL or DOUBLE PRECISION).

SSP2C: sparse_object(DESTPTR) is assigned to have the values of
sparse_object(VRLPTR) as its real part, and the values of sparse_object(VIMPTR) as
its imaginary part.

DSP2C: Copies of sparse_object(VRLPTR) and sparse_object(VIMPTR) are truncated to
REAL format, and these values are assigned to sparse_object(DESTPTR) as the real

and imaginary parts, respectively.

Arguments

DESTPTR (Output) INTEGER
Pointer to sparse vector object in COMPLEX format.

VRLPTR (input/output) INTEGER
Pointer to sparse vector object in REAL [DOUBLE PRECISION] format. The
case of VRLPTR equal -1 is treated as if sparse_object(VRLPTR) was the vector
of all zeros but i1s not considered an occurrence of an uninitialized pointer.

VIMPTR (input/output) INTEGER

Pointer to sparse vector object in REAL [DOUBLE PRECISION] format. The
case of VIMPTR equal -1 is treated as if sparse_object(VIMPTR) was the vector

of all zeros but i1s not considered an occurrence of an uninitialized pointer.

23

SSP2Z[Q,V], DSP2Z[Q,V]
SUBROUTINE SSP2Z[Q,V] (DESTPTR, VRLPTR, VIMPTR, [line, file])

Purpose
sparse_object(VRLPTR) and sparse_object(VIMPTR) correspond to the real and imaginary
part of the complex vector to be built. It is assumed that sparse_object(VRLPTR) and
sparse_object(VIMPTR) are stored in the same format (REAL or DOUBLE PRECISION).

SSP2Z: Copies of sparse_object(VRLPTR) and sparse_object(VIMPTR) are converted to
DOUBLE PRECISION format, and these values are assigned to sparse_object(DESTPTR)

as real and imaginary parts, respectively.

DSP2Z: sparse_object(DESTPTR) is assigned to have the values of
sparse_object(VRLPTR) as its real part and the values of sparse_object(VIMPTR) as

its imaginary part.

Arguments

DESTPTR (Output) INTEGER
Pointer to sparse vector object in DOUBLE COMPLEX format.

VRLPTR (input/output) INTEGER
Pointer to sparse vector object in REAL [DOUBLE PRECISION] format. The
case of VRLPTR equal -1 is treated as if sparse_object(VRLPTR) was the vector
of all zeros but i1s not considered an occurrence of an uninitialized pointer.

VIMPTR (input/output) INTEGER

Pointer to sparse vector object in REAL [DOUBLE PRECISION] format. The
case of VIMPTR equal -1 is treated as if sparse_object(VIMPTR) was the vector

of all zeros but i1s not considered an occurrence of an uninitialized pointer.

24

A .4 Initialization, Configuration, and Inquiry Routines

XSPINI
SUBROUTINE XSPINI

Purpose

Initializes the sparse data structures by dynamically allocating memory for some SparsLinC-
internal global variables. It must be called before any of the other SparsLinC routines
(except for calls to XSPCNF with OPTs 1-15) and needs to be called no more than once (when
called more than once, all but the first call act as no-ops).

Arguments

none

25

XSPCNF
SUBROUTINE XSPCNF (OPT, VAL)

Purpose

Allows user to customize SparsLinC for each run. The following table specifies for
each parameter its name, option number, default value, and range of allowable val-
ues. “SSbucket_size” and “CSbucket_size” are the number of entries per array in the
linked list representation of a single-subscript and compressed-subscript vector respectively.
“switch_threshold” is the number of nonzero entries from which on a SparsLinC sparse vec-
tor is represented in compressed-subscript form. A more detailed explanation of this issue

is provided in Appendix B of the ADIFOR 2.0 User’s Guide, Section B.4.3.

Name OPT Default Range
SSbucket _size 1 8 >1
CSbucket _size 2 32 >1
switch_threshold 3 16 >1

XSPCNF with OPT = 1 or OPT = 2 may be called only before calling XSPINI. Calling
XSPCNF with OPT = 1 or 2 after a call to XSPINI will result in a runtime error. Calls to
XSPCNF with OPT = 3 can be made at any time.

Arguments
O0PT (input) INTEGER
Specifies the Option number associated with a given parameter as given in
the above table.
VAL (input) INTEGER

The new value for the parameter specified by OPT.

26

XSPUIV

SUBROUTINE XSPUIV (ACTION, VALUE)

Purpose

Configures handling of uninitialized vectors. By default, if XSPUIV is not called, all error

messages are written to standard output, and program execution continues after encoun-

tering an uninitialized right-hand side.

Arguments

ACTION

VALUE

(input) INTEGER

ACTION = 1: Specifies the unit number for error reporting.

ACTION = 2: Specifies the maximum number of errors to be reported.
ACTION = 3: Specifies whether program should continue or abort.

(input) INTEGER

If ACTION = 1, VALUE specifies the unit number for error reporting.
If ACTION = 2,

e VALUE = -1 indicates that all errors are to be reported,

e VALUE = 0 indicates that no errors are to be reported, and

e VALUE = k£ > 0 indicates that at most k errors are to be re-
ported.

If ACTION = 3,

e VALUE = 0 indicates that program execution should continue,

e VALUE = 1 indicates that the program should halt upon encoun-
tering the first uninitialized variable, and

e VALUE = 2 indicates that the program should halt after printing
the maximum number of error messages.

27

XSPMEM

SUBROUTINE XSPMEM (USEDKB)

Purpose

Reports how many Kbytes have been allocated in SparsLinC.
Arguments

USEDKB (output) REAL .

The number of KBytes of storage allocated for SparsLinC data structures.

28

XSPFRA
SUBROUTINE XSPFRA

Purpose

Frees all memory allocated for C sparse vector data structures. Note: all pointers to
sparse directional gradient variables (VPTR’s) are left dangling.

Arguments

none

29

References

Alfred Aho, John Hopcroft, and Jeffrey Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, Mass., 1974.

Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hovland. ADIFOR: Gener-
ating derivative codes from Fortran programs. Scientific Programming, 1(1):11-29, 1992.

David Goldberg. What every computer scientist should know about floating-point arithmetic. ACM
Computing Surveys, 23(1):5-48, 1991.

Gene H. Golub and Charles F. Van Loan. Matriz Computations. The Johns Hopkins University Press,
Baltimore, 2nd edition, 1989.

30

